Molarity \& Normality

>Both Normality and Molarity are measures of concentration .
>Molarity is a measure of the no. of moles per liter of solution.
>Normality changes depending on the solution's role in the reaction.

- Weight/volume (w/v) :
- Solid is dissolve in liquid.

A solution containing 5 gm of
$\mathrm{Na}_{2} \mathrm{SO}_{4}$ dissolved in water and diluted to a final volume of 100 ml of solution as $5 \%(\mathrm{w} / \mathrm{v})$ solution.

- Volume/volume (v/v) :
- Liquid is diluted with liquid 5 ml of glacial acetic acid diluted with water to a total volume of 100 ml of solution as a $5 \%(\mathrm{v} / \mathrm{v})$ acetic acid solution.

Weight/weight (w/w) :
Solid is disolved in liquid(gm) but taken in weight unit.
$5 \mathrm{gm} \mathrm{Na} \mathrm{SO}_{4}$ dissolved
in 95 gm of water (approx. 95 ml)

J

Molarity

- Molarity expresses concentration as the number of moles per liter of solution.
- The relative number of molecules available in the solution to react with other molecules.
, Molarity unit $=\mathrm{mol} / \mathrm{lit}, \mathrm{mmol} / \mathrm{lit}$
- One mole is the molecular weight of the substance in grams in one litre of solution.
- 1 milimole is $1 / 1000$ of a mole.
- One-molar (1 M) solution containing one mole of solute per liter of solution.

Calculation \& example

Mole $=$ number of grams $/$ molecular weight

Example :-

- 5 gm of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ is equivalent to how many moles?
- The molecular weight of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ is 142
where as $\mathrm{Na}=23, \mathrm{Na}_{2}=46$ $\mathrm{S}=32$
$\mathrm{O}=16, \mathrm{O}_{4}=64$
So, $5 / 142$ or 0.035 moles

If the 5 gm of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ were dissolved in water to make 1 [of solution, the concentration would be $0.035 \mathrm{~mol} / \mathrm{liter}$.
$0.035 \mathrm{~mol} / \mathrm{L}=35 \mathrm{mmol} / \mathrm{L}$
(milimoles per liter)

Micromoles $=10^{-6}$ Nanomoles $=10^{-9}$

Example:-

- what is the concentration of a solution containing 1.20 gm of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in 200 ml of solution ?
- $\mathrm{Mol} / \mathrm{L}=(1.20 \times 1000) /(106 \times 200)$ $=0.0566 \mathrm{~mol} / \mathrm{L}$ $=56.6 \mathrm{mmol} / \mathrm{L}$

Normality

- Normality is a measure of concentration that is equal to the gram equivalent weight per liter of solution.
- Gram equivalent weight is a measure of the reactive capacity of a molecule.
- Equivalent weight (N)
= M.W. / Valence
The equivalent weight may be determined by dividing the gram formula weight by the total positive or negative charge.

example :

- In $\mathrm{Na}_{2} \mathrm{O}\left(2 \mathrm{Na}^{+1}, \mathrm{O}^{-2}\right)$ the equivalent weight of oxygen is $16.00 / 2=8.00 \&$ the equivalent weight of the compound $\mathrm{Na}_{2} \mathrm{O}$ is $62 / 2=31$.
- 1 normal (1 N) solution contains 1 equivalent weight per liter.

Calculation :-

To prepare another concentration of solution from known stock solution following formula is use.
Calculation :

$$
N_{1} V_{1}=N_{2} V_{2}
$$

Example:

1) Prepare 10 ml standard of $2 \mathrm{mg} \%$ creatinine from $1 \mathrm{gm} \%$ of stock solution?

$$
\begin{aligned}
& \mathrm{N}_{1}=2 \mathrm{mg} \% \\
& \mathrm{~V}_{1}=10 \mathrm{ml} \\
& \mathrm{~N}_{2}=1 \mathrm{gm} \%=1000 \mathrm{mg} \% \\
& \mathrm{~V}_{2}=?
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{N}_{1} \mathrm{~V}_{1} & =\mathrm{N}_{2} \mathrm{~V}_{2} \\
\mathrm{~V}_{2} & =\left(\mathrm{N}_{1} \mathrm{~V}_{1}\right) / \mathrm{N}_{2} 1000 \\
& =(2 \times 10) / 1000 \\
& =0.02 \mathrm{ml} \\
& =20 \mu \mathrm{l}
\end{aligned}
$$

$20 \mu \mathrm{l}$ of $1 \mathrm{gm} \%$ stock solution
$2 \mathrm{mg} \%$ of Creatinine $=$
1.990 ml D.W.

Example-2:

* Prepare 200 ml of 0.5 M NaOH from 10 M NaOH solution.

$$
\begin{aligned}
& \mathrm{N}_{1}=0.5 \mathrm{M} \\
& \mathrm{~V}_{1}=200 \mathrm{ml} \\
& \mathrm{~N}_{2}=10 \mathrm{M} \\
& \mathrm{~V}_{2}=?
\end{aligned}
$$

$$
\mathrm{N}_{1} \mathrm{~V}_{1}=\mathrm{N}_{2} \mathrm{~V}_{2}
$$

$$
\begin{aligned}
V_{2} & =\left(N_{1} V_{1}\right) / N_{2} \\
& =(0.5 \times 200) / 10 \\
& =10 \mathrm{ml}
\end{aligned}
$$

10 ml of 10 molar stock
$0.5 \mathrm{M} \mathrm{NaOH}=$

190 ml D.W.

Thank you

