

- Glycolysis
- Gluconeogenesis
- Glycogenesis
- Glycogenolysis

Glycolysis

Glycolysis: General Functions

Oxidation of glucose

Products:

- Pyruvate
- ATP
- NADH
- Generate intermediates for other pathways
 - HMP pathway
 - Glycogen synthesis
 - Pyruvate dehydrogenase
 - Fatty acid synthesis
 - Krebs' Cycle
 - TG synthesis

Specific tissue functions

- RBC's
 - Rely exclusively for energy
- Skeletal muscle
 - Source of energy during exercise
- Adipose tissue & Liver
 - Source of glycerol-P for TG synthesis
 - Source of acetyl-CoA for FA synthesis

Regulation of Cellular Glucose Uptake

Brain & RBC:

- GLUT-1 has high affinity (low Km)for glucose and are always saturated.
- Insures that brain and RBC always have glucose.
- Liver:
 - GLUT-2 has low affinity (hi Km) and high capacity.
 - Uses glucose when fed at rate proportional to glucose concentration
- Muscle & Adipose:
 - GLUT-4 is sensitive to insulin

Glucose Utilization

Hexokinase:

- High affinity for glucose
- muscle and other tissues

Glucokinase:

- Low affinity for glucose
- liver

Properties of

Glucokinase and Hexokinase

Table 11-1

	Glucokinase	Hexokinase		
Kinetic parameters				
Km	High (10 mM)	Low (<100 μM)		
V _{max}	High	Low		
Tissue distribution	Liver Pancreatic beta cells	Most tissues		
Regulation				
Short-term	Activity responds to changes in glucose concentration	Inhibited by glucose-6-phosphate		
Long-term	Synthesis induced by insulin	Constituțive		

Regulation of Cellular Glucose Utilization in the Liver

Feeding

- Blood glucose concentration high
- Glucokinase induced by insulin
- GLUT-2 taking up glucose
- Glucose use for Glycogen synthesis by liver

Post-absorptive state

- Blood & cell glucose low
- Glucokinase not phophorylating glucose
- GLUT-2 not taking up glucose
- Liver not utilizing glucose
- Starvation

Regulation of Cellular Glucose Utilization in the Muscle

- Exercising Muscle (fed or starved)
 - Low G6P (being used in glycolysis)
 - No inhibition of HK
 - High glycolysis from glycogen or blood glucose

Regulation of Glycolysis

The PDH Complex

Multi-enzyme complex

- Three enzymes
- 5 co-enzymes
- Allows for efficient direct transfer of product from one enzyme to the next

Enzymes	Cofactors	Role in Overall Reaction of PDH Complex
E ₁ (pyruvate dehydrogenase)	Thiamine pyrophosphate	Decarboxylation
E ₂ (dihydrolipoyl	Lipoic acid	Oxidation
transacetylase)	CoA-SH	Acyl transfer
E ₃ (dihydrolipoyl dehydrogenase)	FAD NAD+	Regeneration of lipoic acid
PDH kinase PDH phosphatase		Phosphorylation and inactivation of E_1 Dephosphorylation and activation of E_1

The PDH Reaction

Pyruvate Kinase Deficiency

RBC dependent on glycolysis for energy

- Sodium/potassium ion pumps require ATP
- Abnormal RBC shape a result of inadequate ion pumping
- Excessive RBC destruction in spleen
 - Hemolysis
 - Jaundice (elevated bilirubin, fecal urobilinogens)
 - Increased reticulocyte count

							2002 1		
		~ ·							
	(aluc	con	eo (den	esi	S		
					9				
**	8		12		22		**	8	

The Meaning of It All...

- Gluconeogenesis means
 - To make new glucose
 - Make glucose from non-carbohydrate precursors
 - Create new glucose from the products of its breakdown

- Some tissues use glucose exclusively for energy:
 - Brain, RBCs
- Other tissues use it according to metabolic demand:
 - Remember Respiratory quotient?
 - Muscle

What are the sources of precursors for gluconeogenesis?

Pyruvate - major precursor
Lactate – from muscle, forms pyruvate
some *amino acid* carbon skeletons- from diet or breakdown of muscle protein during starvation- most important is alanine
TCA cycle intermediates propionate from breakdown of fatty acids and amino acids.

✓ *glycerol* from certain lipids.

I'm Back...

Glycolysis

- Key Enzymes:
 - Hexokinase
 - PFK
 - Pyruvate Kinase
- These enzymes catalyze the irreversible reactions of Glycolysis that must be overcome in Gluconeogenesis.

Glycolysis		GNG
Hexokinase	Undone by	Glucose-6-Phosphatase
PFK	Undone by	Fru-1,6-BisPhosphatase
Pyruvate Kinase	Undone by	Pyruvate Carboxylase AND PEP Carboxykinase

Gluconeogenesis

The Basics

- Location:
 - Cytosol
- Purpose:
 - Make Glucose
- Key Enzymes:
 - Pyruvate Carboxylase
 - PEP Carboxykinase
 - Fructose 1,6 Bisphosphatase
 - Glucose 6 Phosphatase

copyright 1996 M.W.King

The Gluconeogenic cycle that uses Lactate to move Pyruvate from the cell to the liver.

The Cori Cycle

Glycerol

derived from adipocyte lipolysis

hepatic glycerol kinase

Regulation

Stimulation

- Low blood Glucose
- Glucagon
- ATP
- Citrate
- Acetyl Co A
- Pyruvate
- Lactate
- Alanine
- OAA

Regulation

- Inhibition
 - High blood Glucose
 - Insulin
 - Low Energy Charge
 - Fructose 2,6 BisPhosphate

Regulation of Gluconeogenesis and Glycolysis

Allosteric Effects

Pyruvate kinase vs Pyruvate carboxylase

- PK Inhibited by ATP and alanine
- PC Activated by acetyl CoA
- Fasting results in gluconeogenesis
- PFK-1 vs FBPase-1
 - FBPase-1 inhibited by AMP & F2,6P₂
 - PFK-1 activated by AMP and & F2,6P₂
 - Feeding results in glycolysis

GLYC	COGEN	I MET/	ABOLI	

Highly branched polymer

Glycosidic links $\alpha 1 \rightarrow 4$. $\alpha 1 \rightarrow 6$.

Glucose stored as glycogen mostly in the liver and skeletal muscle.

- Glucose can be rapidly delivered to the blood stream when needed =
 Glycogenolysis
- Enough glucose and energy triggers =
 Glycogenesis

<u>STEP 2- Synthesis of Uridine Diphosphoglucose</u> Enzyme = *UDP-glucose pyrophosphorylase*

Reaction: glucose-1-phosphate + UTP →

STEP – 3 Glycogen synthesis

Enzyme = *glycogen synthase*

◆ Glucose always added to *nonreducing* end. The glycosidic bond formed is *α* (1 → 4).
 ◆ Glycogen synthase is inhibited by phosphorylation, regulated by glucagon

Enzyme = *branching enzyme*

introduces branching by *transferring* a teminal fragment of *6-7 residues* from a growing chain to a *6-position* farther back in a chain.

• makes a branch with an α (1 \rightarrow 6) link creating *two* ends to add glucose.

 branching accelerates the rate of glucose release during degradation.

Regulation of Glycogenesis

Regulation of Glycogenesis

GLYCOGENOLYSIS

1,6 linkage cleaved

as previously shown

-- Phosphoglucomutase then yields glucose-6-phosphate, which can be dephosphorylated or enter glycolysis.

Primary hormones =*-- epinephrine*

-- glucagon

-- insulin

 Primary enzyme targets in glycogen metabolism=
 Glycogen phosphorylase and Glycogen synthase.
 The actions of the hormones are indirect.

Example- hormones and diet

Dinner at 9:00 pm -- steak, mashed potatoes, sherbert for dessert, wine

Sleep immediately, sleep late

During sleep: amino acids, CH₂O
 → high blood glucose levels
 → higher insulin
 → glycogenesis

Wake late for class \bigcirc \rightarrow adrenaline rush

→ run to class

====== *HORMONES* =========

Glucagon - low glucose levels

- -- Acts primarily on liver cells.
- -- Stimulates glycogen breakdown
- -- Inhibits glycogenesis.
- -- Blocks glycolysis
- -- Stimulates gluconeogenesis.

Epinephrine - low glucose levels

- -- Acts primarily on skeletal muscle.
- -- Stimulates glycogen breakdown
- -- Inhibits glycogenesis.

Glucagon and epinephrine both stimulate intracellular pathway via increasing levels of cAMP.

Insulin

- -- *High levels of glucose* induce release of insulin from β-cells of islets of Langerhan in the pancreas.
- -- Detected by receptors at surface of *muscle* cells.
- -- Increases glycogenesis in muscle.

Glycogen Storage Diseases:

-- A family of serious, although not necessarily fatal, diseases caused by mutations in the enzymes involving in glycogen storage and breakdown. Glycogen Storage Diseases are genetic enzyme deficiencies associated with excessive glycogen accumulation within cells.

Some enzymes whose deficiency leads to glycogen accumulation are part of the interconnected pathways shown here. glycogen glucose-1-P Glucose-6-Phosphatase glucose-6-P \longrightarrow glucose + P_i fructose-6-P Phosphofructokinase fructose-1,6-bisP Glycolysis continued

Glycogen Storage Disease	Symptoms , in addition to glycogen accumulation	
Type I , liver deficiency of Glucose-6-phosphatase (von Gierke's disease)	hypoglycemia (low blood glucose) when fasting, liver enlargement.	
Type IV , deficiency of branching enzyme in various organs, including liver (Andersen's disease)	liver dysfunction and early death.	
Type V , muscle deficiency of Glycogen Phosphorylase (McArdle's disease)	muscle cramps with exercise.	
Type VII , muscle deficiency of Phosphofructokinase .	inability to exercise.	

Von Gierke's disease

Deficiency of glucose 6 phosphatase enzyme

- Hypoglycemia
- Retard growth
- Lactic acidosis
- Ketosis
- Hyperlipidemia
- Hyperuricemia
- Cirrhosis
Types of Glycogen Storage Disease

Some forms of GSDs are life-threatening while others cause little in the way of illness. These *genetic diseases* are caused by mutations in the enzymes involved in glycogen storage and breakdown.

Туре	Enzyme Deficiency	Name	Tissue	Characteristics
l	glucose-6-phosphatase	Von Gierke's disease	liver, kidney	Enlarged liver, liver loaded with glycogen, severe hypoglycemia, ketosis, hyperlipemia
II.	α -glucosidase(lysosome)		liver, heart, muscle	fatal; glycogen accumulates in lysosomes
Ш	debranching enzyme	Pompe's disease	liver, muscle	short-chained glycogen, some hypoglycemia
IV	branching enzyme	Cori's disease	liver	fatal; long unbranched glycogen
V	phosphorylase	Andersen's disease McArdle's disease	emuscle	severe cramps upon exercise; little glycogen in muscle
VI	phosphorylase	Hers' disease	liver	similar to I, but milder
VII	phosphofructokinase	Tarui's disease	muscle	similar to V; high G6P activates glycogen synthase; more glycogen accumulates in muscle; some erythrocyte involvement
VIII	phosphorylase kinase		liver	similar to I but milder
IX	glycogen synthase		liver	less glycogen in liver