Basic Cell Structure & Organelles

DR PIYUSH TAILOR Associate Professor Dept of Biochemistry Govt. Medical College Surat

Plasma Membrane

- Made up of lipids, proteins & small amount carbohydrate.
- Carbohydrate present as glycolipids & glycoproteins.
- Phospholipids are most common component & have amphipathic in nature.
- 5' Nucleotidase & Alkaline Phosphatase are seen on outer part of cell membrane, called Ectoenzymes.

Fluid Mosaic Model

Fluid Mosaic Model

- Choline containing Phospholipids are mainly in the external layer of membrane
- Ethanolamine & Serine containing phospholipids are in internal layer
- Lipid bilayer shows free lateral movement of its components *Fluid In Nature*.
- The components do not move freely from inner to outer or outer to inner layer (*Flip-Flop movement restricted*).
- Fluidity enables the membrane to perform endocytosis & exocytosis.

Fluid Mosaic Model

- Increase cholesterol concentration, membrane became less fluid on the outer surface, but more fluid on inner surface.
- Increase Unsaturated cis fatty acids increase the fluidity.
- In alcoholic cirrhosis, cholesterol content in RBC membrane is increase. This decrease fluidity of the membrane. Such cell are spiculated (Spur cell).That are destroyed constantly by spleen resulting in anemia.

The fluid mosaic model of cell membrane

Proteins associated with the lipid bilayer

Eukaryotic Cell Organelles and Function

1. <u>Nucleus</u>

- <u>Nickname</u>: "The Control Center"
- All cell contain except RBC
- <u>Function</u>: holds the DNA

DNA Replication.

RNA Synthesis.

- Parts:
 - Nucleolus: dark spot in the middle of the nucleus that helps make ribosomes
 - 2. Inner one is called Perinuclear membrane
 - 3. Outer one is continuous with Endoplasmic Reticulum.

Eukaryotic Cell Organelles and Function

1. **Ribosomes**

- <u>Function</u>: makes proteins
- Found in all cells, prokaryotic and eukaryotic

Dr Piyush Tailor

Eukaryotic Cell Organelles and Function

1. Endoplasmic Reticulum (ER)

- <u>Nickname</u>: "Roads"
- Smooth & Rough ER.
- Membrane is continue with outer layer of nucleus.
- Railway track appearance
- Function:
 - 1. The internal delivery system of the cell.
 - 2. Actively synthesis protein
 - e.g.immunoglobulin,glycoprotein,lipoprotein.
 - 3.Detoxification of various drugs e.g. aniline,morphine,phenobarbitone.

Endoplasmic Reticulum (ER)

- When cell are fractionated ,the complex of ER network is not isolated as a whole, but is disrupted in many places.
- These membrane are automatically reassembled to form <u>Microsomes.</u>

Endoplasmic Reticulum

- 2 Types:
 - 1. Rough ER:
 - Rough appearance because it has ribosomes
 - <u>Function</u>: helps make proteins, that's why it has ribosomes
 - 2. Smooth ER:
 - NO ribosomes
 - Function: makes fats or lipids

Eukaryotic Cell Organelles and Function

1. Golgi Complex

- <u>Nickname</u>: The shippers
- <u>Function</u>: packages, modifies, and transports materials to different location inside/outside of the cell
- It is reach in Glycoprotein

<u>Lysosomes</u>

circular, but bigger than ribosomes)

- <u>Nickname</u>: "Clean-up Crews" " Bags of Enzymes".
- pH inside lysosomes is lower than cytosol.
- <u>Function</u>: to break down food into particles the rest of the cell can use and to destroy old cells.
- Contain : Polysaccharide hydrolysing enzyme (glucosidase,galactosidase etc.), Protein hydrolysing enzyme (cathepsins,elastase,collegenase),Nucleic acid hydrolysing enzyme

(ribonuclease,deoxyribonuclease),lipid hydrolysing enzyme (fatty acyl esterase),phosphatase

• Endocytic vesicle & phagosomes are fused with primary lysosome to form the Secondary lysosome.

Clinical significant of Lysosome

- In gout
- In meat
- Postmortem autolysis
- Tumour cell release cathepsin
- Accumulation lipids or Polysaccharide due absence of Lysosomal enzyme
- Silicosis fibrosis
- Inclusion cell disease

Eukaryotic Cell Organelles and Function

1. Mitochondria

- <u>Nickname</u>: "The Powerhouse"
- <u>Function</u>: Energy formation
 Breaks down food to make ATP
 - <u>ATP</u>: is the major fuel for all cell activities that require energy

Ur Fiyush Tallor

Marker Enzyme

- Mitochondria
- Lysosome
- Golgi complex
- Microsomes
- Cytoplasm
- Peroxime
- Plasma membrane

- ATP synthase
- Cathepsin
- Galactosyl transferase
 - Glucose 6 phosphatase
 - LDH
 - Catalase
 - 5'Nucleiotidase

Transport Mechanism

1. Active Transport

- -Require Energy
- -Unidirection
- -Require specific integrale protein called Transporter
- -Susceptible to inhibition
 - E.g. Sodium pump

-Can saturated at higher concentration of solutes.

Passive Transport

1 simple diffusion

- Very slow process
- Driven by the concentration gradient
- Occurs from higher conc. to lower conc.
- Not require energy

2 Facilitated diffusion

- Carrier Mediated
- Not require energy
- Fast than simple diffusion
- Depend on concentration gradiant
- Structurally similar solute can competitively inhibit
- Bi-direction
- By Ping & Pong mechanism
- e.g. Glucose transporter

Aquaporins

- Water channels
- Tetramer

- More than 10 aquaporins found in human
- AQP 1 Choroid plexus of lateral ventricle & Play role in formation of CSF
- AQP 4 Predominant water channel in brain
- In several disease, it's function impaired.
 Congenital cataract.
 Nephrogenic diabetes insipidus.

ION CHANNELS (Cation conductive channed)

- Quick transporter
- For electrolyte like Ca⁺, K⁺,Na⁺,Cl⁻
- Important for Nerve impulse conduction, Synaptic transmission, Secreation biologically active substance
- 1.Voltage gated channels
 - which open by membrane depolarization
 - Involve in nerve impulse conduction
 - e.g. Na⁺ channels, K⁺ channels
 - Local anesthateic like procaine block this channels.
 - Point mutation in Na⁺ channels lead to Myotonia (Increase muscle excitability)
 - Mutation in K⁺ channels lead to "Long QT syndrome" (Inherited cardiac arrythamia)

ION CHANNELS (Cation conductive channed)

- 2.Ligand gated channels
 - Open by binding of effector
 - Acetyl choline which open Na⁺ channel & generate action potential in post synaptic membrane.
 - Inositol triphosphate opens Ca⁺ channel in sarcoplasmic reticulum

Dr Piyush Tailor

lonophores

- It is a Transport antibiotic
- Mobile ion carriers Valinomycin
- Channel formers Gramicidin

Dr Piyush Tailor

- Uniport
- Glucose transporter
- <u>Co Transport</u>
- 1. Symport
 - e.g. Sodium dependent glucose transport
 - Amino acid transport
- 2. Antiport
 - Na⁺ K⁺ ATPase pump
 - Chloride Bicarbonate exchange in RBC

Secretory Vesicle & Exocytosis

- Under appropriate stimuli, the secreatory vesicle or vecuoles move towards & fuse with plasma membrane.
- Thus content of vesicles are externalised. This process is called Exocytosis or Reverse pinocytosis
- E.g.
- release of trypsinogen from pancreatic acinar cell
- release of insulin by beta cell of langerhans

Endocytosis

- Endocytosis is mechanism by which cells internalise extracellular macromolecules.
- Two type Pinocytosis & Phagocytosis

Pinocytosis

- "Drinking by cell" = take up fluid
- Receptor mediated
- E.g. LDL, several hormone take up by cell *Phagocytosis*
- "Eating by cell"
- Engulfment of large particles such as bacteria by macrophages & granulocytes.

