Diabetes Mellitus

DR PIYUSH TAILOR
ASSOCIATE PROFESSOR
GOVT. MEDICAL COLLEGE
SURAT

What is diabetes?

- Group of diseases
- High levels of blood glucose
- Due to defects in insulin production
- Due to defects in insulin action
- **Both.**
- Metabolic disorder
- Chronic hyperglycaemia
- Disturbances of carbohydrate, fat and protein metabolism

Diabetes – Clinical Features

Commom Representation

- Polyuria
- Polyphagia
- Polyuria
- Weight loss.
- Blurring of vision

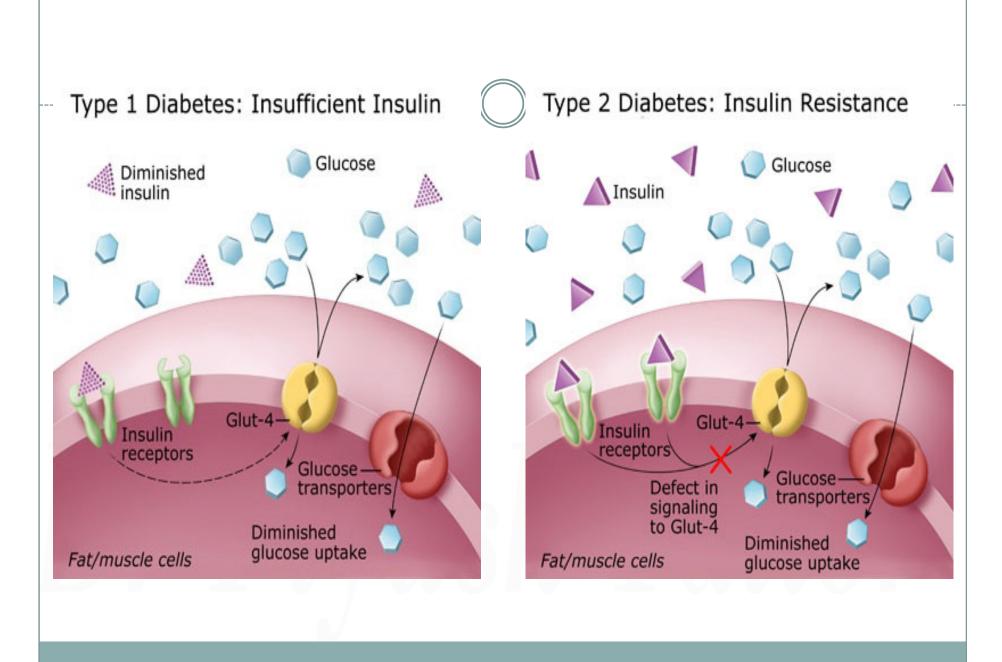
Severe forms

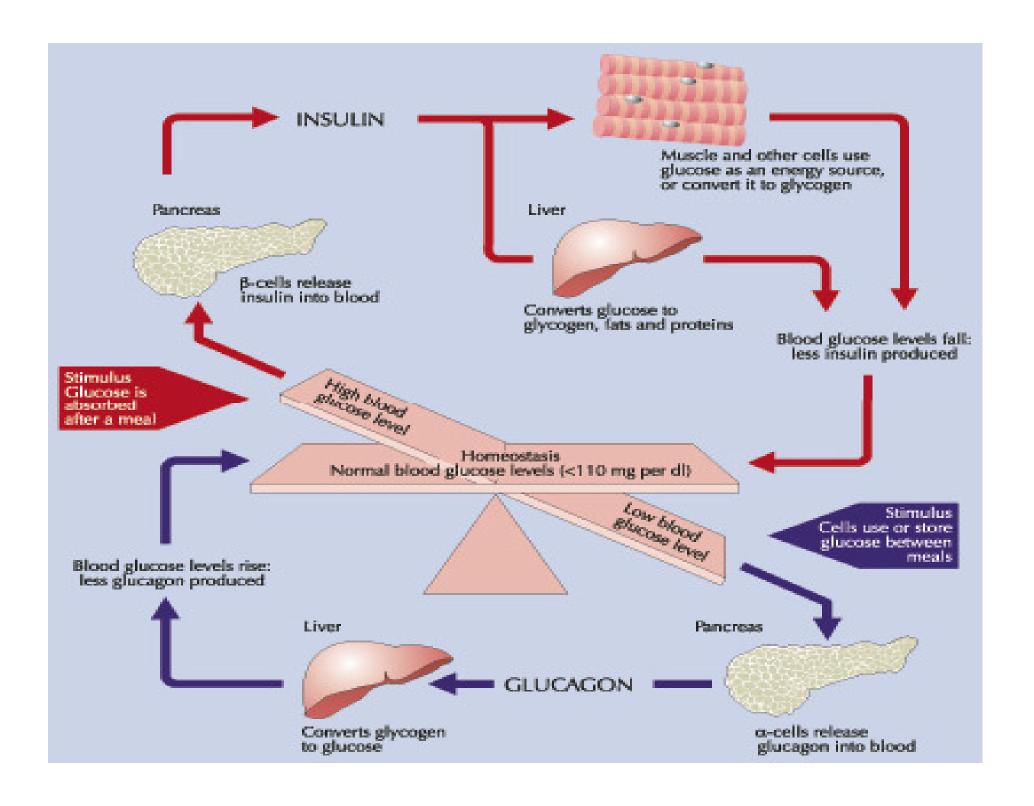
- Ketoacidosis
- ▶ Non-ketotic hyperosmolar state

Later Symptoms

- Fatigue
- Dry skin
- Recurrent infection
- Feet Ulceration
- Sensory loss in lower extremities
- Erectile dysfunction
- Slow Healing of wounds
- Visual disturbance

Types of Diabetes


- Type 1 Diabetes Mellitus
- Type 2 Diabetes Mellitus
- Gestational Diabetes
- Other types:
 - **► LADA** (Latent Autoimmune Diabetes of Adult onset)
 - **▼MODY** (Maturity Onset Diabetes of Young)
 - Mutation in Gene
 - **Secondary Diabetes Mellitus**


Type 1 diabetes

- ▶ Insulin-dependent diabetes mellitus (IDDM)
- Juvenile-onset diabetes.
- ▶ Immune system destroys pancreatic beta cells
- Children and young adults
- Although disease onset can occur at any age.
- Type 1 diabetes may account for 5% to 10% of all diagnosed cases of diabetes.

Type 2 diabetes

- Non-insulin-dependent diabetes mellitus (NIDDM)
- Adult-onset diabetes.
- ▶ 90% to 95% of all diagnosed cases of diabetes.
- Insulin resistance
- As the need for insulin rises
- **&** Pancreas gradually loses its ability to produce insulin.
- Associated with
 - Older age
 - Obesity & Physical inactivity
 - Family history of diabetes & History of gestational diabetes
 - Impaired glucose metabolism

Gestational diabetes

- Diagnosed in some women during pregnancy.
- After pregnancy, 5% to 10% of women with gestational diabetes are found to have type 2 diabetes.

Other types of DM

- Maturity Onset Diabetes of Young
 - Surgery
 - Drugs
 - Malnutrition
 - Infections
 - Other illnesses.
- 1% to 5% of all diagnosed cases of diabetes.

LADA

- ▶ Latent Autoimmune Diabetes in Adults (LADA)
- ▶ <u>Autoimmune</u> <u>type 1 diabetes</u> at older age
- ▶ "Slow Onset Type 1" diabetes

MODY

- ▶ MODY Maturity Onset Diabetes of the Young
- Mutations
 - ▶ In enzyme glucokinase
 - In Receptor
- ▶ In sufficient insulin release from pancreatic β-cells

Secondary DM

Secondary causes of Diabetes mellitus include:

- Acromegaly
- Cushing syndrome
- Thyrotoxicosis
- Pheochromocytoma
- Chronic pancreatitis
- Cancer
- Drug induced hyperglycemia

Reference Ranges

	FBS in mg%	PP2BS in mg %	HbA1C in %
Normal	70 – 110	< 140	4 – 6.5
Pre-Diabetic (Impaired Fasting Glycemia)	110 - 126	< 140	4 – 6.5
Pre-Diabetic (Impaired Glucose Tolerance)	110 - 126	140 – 200	6.5 – 7.0
Diabetes mellitus	> 126	> 200	> 7.0

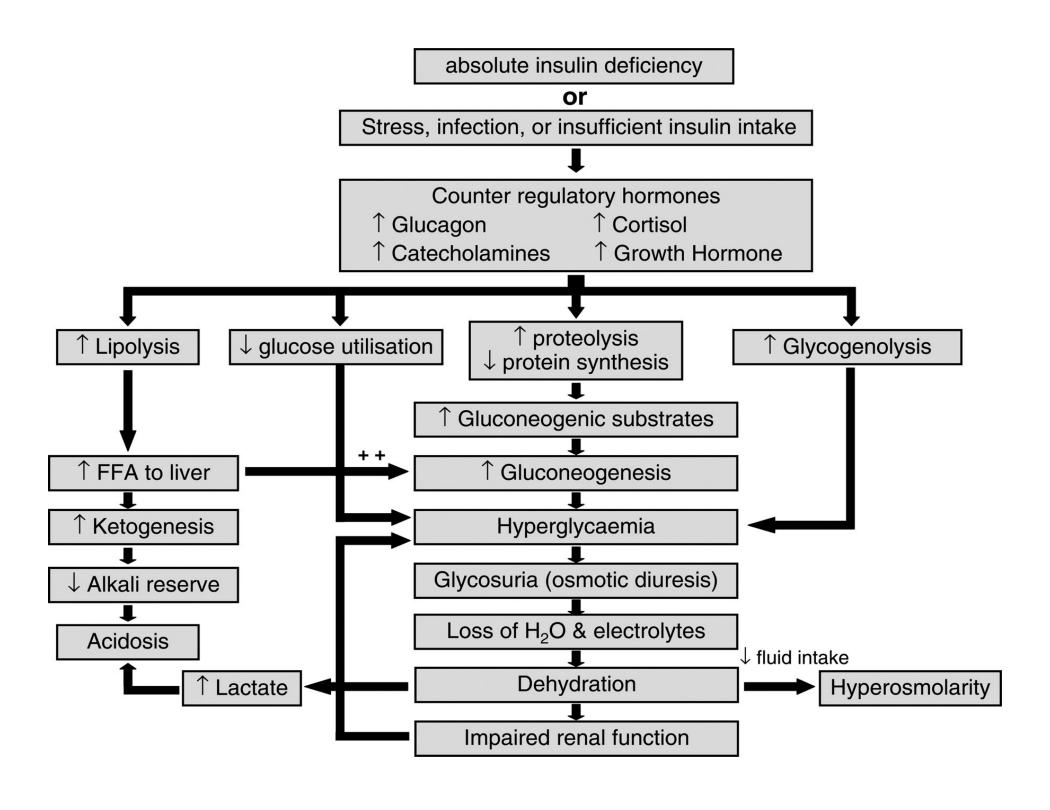
Investigation

- FBS
- PP2BS
- Oral Glucose Tolerance Test
- I.V. Glucose Tolerance Test
- HbA1C
- Urinary Sugar Protein
- Lipid Profile
- Renal Function Test
- Fundus Examination
 Nerve Conduction Study

Complications

- Acute complications
- Chronic complications

Dr Plyush Indon


Acute complications

- Diabetic Ketoacidosis
- Hyperosmolar Non-ketosis Coma
- Hypoglycemia

Diabetic ketoacidosis (DKA)

- Acute and dangerous
- On presentation at hospital,
 - Dehydrated
 - Hypotension & shock
 - Abdominal pain is common and may be severe.
 - Breathing = Rapid and Deep.
 - Kussmull's breathing
 - Fruity smell from breath
 - O May progress to coma.

Investigation in DKA

- Electrolyte
- Blood Glucose
- Blood Ketone body
- ABG
 - o pH
 - o pO2
 - o pCO2
 - o HCO3-

Hyperosmolar Nonketotic Coma

- Symptoms are similar to DKA
- Due to osmotic effect of high glucose levels
- water loss increases and eventually lead to dehydration.
- Progressively dehydrated
- Electrolyte imbalance.
- Lethargy
- Ultimately progress to a coma

Hypoglycemia

- Due to several diabetes treatments.
- Sweaty & Weak.
- Altered Consciousness
- Coma, Seizures
- Caused by
 - Too much dose of insulin or oral hypoglycemic drugs.
 - Incorrectly timed insulin
 - Too much or incorrectly timed exercise
 - Not enough food

Chronic complications

- Microvascular diseases
- Macrovascular diseases
 - Coronary artery disease
 - Peripheral vascular disease
 - Intermittent claudication
 - Stroke
 - Diabetic foot

Microvascular diseases

- Diabetic cardiomyopathy,
- Diabetic nephropathy
- Diabetic neuropathy
- Diabetic retinopathy

Management of Diabetes Mellitus Pot-H-Insulia

Management of DM

The major components of the treatment of diabetes are:

Diet and Exercise

Oral hypoglycaemic therapy

Insulin Therapy

Diet & Exercise

Dietary treatment should aim at:

- Ensuring weight control
- Providing nutritional requirements
- Allowing good glycemic control
- Correcting any associated blood lipid abnormalities

Exercise

- Reduce abdominal obesity
- Minimum 30 40 minutes brisk walking
- Aerobic exercise

Nutritional Requirement

Carbohydrate

- 60-70% calories from carbohydrates & monounsaturated fats
- Protein
 - 10-20% total calories
- Fat
 - <10% calories from saturated fat</p>
 - o 10% calories from PUFA
 - <300 mg cholesterol</p>
- Fiber
 - 20-35 grams/day
- Alcohol
 - Type I limit to 2 drinks/day, with meals
 - Type II substitute for fat calories

B. Oral Anti-Diabetic Agents

- Classes of Oral anti-diabetic agents:
 - 1. Sulfonylureas
 - 2. Biguanides
 - 3. Thiazolidinediones
 - 4. Alpha-glycosidase inhibitors
 - 5. Meglitinides
 - 6. Dipeptidyl peptidase-4 inhibitor

Sulfonylureas

Mechanism: Stimulation of insulin secretion

1st generation:

Tolbutamide

Chlorpropamide

2nd generation:

Glybenclamide

Glipizide

3rd generation:

Glymepiride

Biguanides

- Phenformin
- Metformin
- > Mechanism
 - Decrease glucose production from Liver by mild inhibiting ETC complex –I
 - Decrease intestinal absorption of Glucose

Thiazolidinediones (TZDs)

Representative Drugs

Rosiglitazone

Pioglitazone

- Pharmacological effects
 - Improving function of insulin sensitivity
 - Decrease insulin resistance

α-glucosidase inhibitors

- Representative Drugs
 - Acarbose
 - Voglibose
- Mechanism
 - Competitively inhibiting alpha amylase
 - To inhibit digestion of starch & disaccharides
- Main adverse reaction
 - Flatulence, diarrhea.

Meglitinides

Representative Drugs

Repaglinide

Key point

- Increase insulin release by inhibiting ATP-sensitive K+channel
- No direct effect on insulin release
- Used alone or together with biguanides
- Carefully used for patients with kidney or liver impaired.

Dipeptidyl Peptidase-4 (DPP) Inhibitor

- Sitagliptin
- Saxaliptin
- Mechanism of Action
 - DPP-4 inactivate Incretins
 - So DPP-4 inhibitor increase incretins
 - Inhibit insulin degradation
 - Decrease Glucagon

Indication of Insulin Therapy

Short-term use:

- Acute illness, surgery, stress and emergencies
- Pregnancy
- Insulin may be used as initial therapy in type 2 diabetes
- in marked hyperglycaemia
- Diabetic ketoacidosis
- Hyperosmolar nonketotic coma

Long-term use:

If targets have not been reached after optimal dose of combination therapyapy

Types of insulin					
Insulin type/action (appearance)	Brand names (generic name in brackets)	Basal/bolus	Dosing schedule		
Rapid-acting analogue (clear) Onset: 10–15 minutes Peak: 60–90 minutes Duration: 4–5 hours	Humalog® (insulin lispro) NovoRapid® (insulin aspart)	Bolus	Usually taken right before eating or to lower high blood glucose		
Short-acting (clear) Onset: 0.5–1 hour Peak: 2–4 hours Duration: 5–8 hours	Humulin®-R Novolin®ge Toronto	Bolus	Taken about 30 minutes before eating, or to lower high blood glucose		
Intermediate-acting (cloudy) Onset: I-3 hours Peak: 5-8 hours Duration: up to 18 hours	Humulin®-N Novolin®ge NPH	Basal	Often taken at bedtime, or twice a day (morning and bedtime)		
Extended long-acting analogue (Clear and colourless) Onset: 90 minutes Peak: none Duration: 24 hours	Lantus® (insulin glargine) Levemir® (insulin detemir)	Basal	Usually taken once or twice a day		
Premixed (cloudy) A single vial contains a fixed ratio of insulins (the numbers refer to the ratio of rapid- or fast-acting to intermediate-acting insulin in the vial)	Humalog® Mix 25™ Humulin® (20/80, 30/70) Novolin®ge (10/90, 20/80, 30/70, 40/60, 50/50)	Combination of basal and bolus insulins	Depends on the combination		

Treatment of DKA

- 1. Improve circulatory volume
- 2. Decrease Serum glucose
- 3. Clear serum of ketonebodys
- 4. Correct electrolyte imbalances

Dr Plyush Indor

Treatment of DKA

Principles of Treatment:

- Replacement of fluid deficits.
- Correction of acidosis & hyperglycemia via Insulin administration.
- Correction of electrolytes imbalance.
- Treatment of underlying cause.

Fluids replacement

Intravenous solutions

- Replace extravascular and intravascular fluids
- Replace electrolyte losses
- Dilute both the glucose level

Insulin is needed to help

- switch from a catabolic state to an anabolic state
- uptake of glucose in tissues
- reduction of gluconeogenesis
- reduce ketone production.

Fluid Correction

- Initial correction of fluid loss is either
 - by isotonic NaCl solution
 - by lactated Ringer solution.
- The recommended schedule:
 - Administer 1 -3 L during the first hour.
 - Administer 1 L during the second hour.
 - Administer 1 L during the following 2 hours
 - Administer 1 L every 4 hours
- When blood sugar < 180 mg/dL
 - o 5-10% dextrose with half isotonic NaCl solution.
- In maintainance, half-normal saline at 200-1000 mL/h

Insulin Therapy

- Regular insulin infusion = 0.1 U/kg/hour
- Serum Glucose should not decrease more than
- 100mg%/hour
- If Glucose falls < 200 prior to correction of acidosis,
 - change IV fluid from 5% Dextrose or 10 % dextrose
 - But don't decrease the rate of insulin infusion.
- Use initial bolus of insulin (IV/IM) is controversial.

Correction of Acidosis

- Insulin therapy
 - Stops Lipolysis
 - Decrease production of ketone bodies.
- Normal saline
 - Correction of dehydration
 - Normalize the blood PH.
- Bicarbonate therapy
 - should not be used unless severe acidosis (pH<7.0)

Correction of Electrolyte Imbalance

- If K+ is low.
 - As soon as the urine output is restored, potassium supplementation
- If K+ is hiigh
 - Potassium should be corrected
 - Furosemide
 - Insulin
 - Salbutamol
 - Bicorbonate

Thank You

Dr Plyush Indon