Chromosomes and DNA Condensation

Dr PIYUSH B. TAILOR
Associate Professor
Department of Biochemistry
Govt. Medical College
Surat

Copyright © 2006 Pearson Prentice Hall, Inc.

Mathematic behind Condensation

- Human genome (in diploid cells) $=6 \times 10^{9} \mathrm{bp}$
- $6 \times 10^{9} \mathrm{bp} \times 0.34 \mathrm{~nm} / \mathrm{bp}=2.04 \times 10^{9} \mathrm{~nm}=2$ m/cell
- Very thin (2.0 nm), Extremely fragile
- Diameter of nucleus $=5-10 \mathrm{~mm}$
- DNA must be packaged to protect it,
- But it must still be accessible to allow gene expression and cellular responsiveness

HISTONES

- Main packaging proteins
- 5 classes: H1, H2A, H2B, H3, H4.
- Rich in Lysine and Arginine
- DNA wraps around it 1 3/4 times for a 7-fold condensation factor.

Nucleosome

Nucleosome

Chromatin fibril

Beads-on-a-string form of chromatin

Beads on a String-10 nm Fiber

10 nm Fiber

10 nm fiber consists of nucleosomes

- A string of nucleosomes is seen under EM as a 10 nm fiber

b)

30 nm Chromatin Fibril

- 30 nm fiber is coil of nucleosomes with 6/turn

The 30 nm Fiber (Compacts DNA 7X more)

a solenoid

b zigzag

Different forms of chromatin show differential gene activity

Euchromatin (E) vs Heterochromatin (H)

Heterochromatin = More condensed
=(tightly packed)
= Resistant to DNase digestion.

Transcriptionally active DNA (an active gene) is in euchromatin.

Variations In Histones

- How can cells introduce changes in protein structure and thus protein function?
- Mutations
- Post transcriptional modifications-ex alternate splicing
- Post translational modifications
- Acetylation
- Methylation
- Ser-Thr O-phosphorylation
- His N-phosphorylation
- NOTE: These processes are dynamic. They give the cell another means to regulate gene expression

