

Nucleiotide Needs

- DNA synthesis
- RNA synthesis
- Energy Currency like
 ATP
- Secondary messanger • C-AMP, C-GMP
- Intermediate in metabolisms = CO-ENZYME
 NAD, NADP, FAD, AMP, ATP

Source of Nucleotide

Denovo Synthesis of Nucleiotide

• Salvage Pathway (Normal cell turnover)

• Diet

Synthesis of Inosine Monophosphate (IMP)

- Basic pathway for biosynthesis of purine ribonucleotides
- Starts from ribose-5-phosphate(R-5-P)
- Requires 11 steps overall
- occurs primarily in the liver

PRPP synthetase (ribose phosphate pyrophosphokinase

Glutamine :Phosphoribosyl pyrophosphate amidotransferase

Synthesis of IMP ("Parent" purine nucleotide)

- Next nine steps in purine nucleotide biosynthesis leading to the synthesis of IMP (whose base is hypoxanthine).
- Requires
 - o four ATP.
 - N¹⁰-formyltetrahydrofolate.
 - Aspartate.
 - Glycine

•<u>Step 6</u>: closing of the imidazole ring

Step 9: elimination of fumarate

Step 10: acquisition of C2 H_2N 5-Aminoimidazole-4-carboxamide CHribonucleotide (AICAR) H_2 N^{10} -Formyl H₄ folate (10)**AICAR transformylase** H₄ folate H_2N CH N-Formylaminoimidazole-4-carboxamide ribonucleotide (FAICAR) O =

IMP is the precursor for both AMP and GMP.

4. ADP, ATP, GDP and GTP biosynthesis

GDP

ADP

GMP

ATP

Inhibitors of Purine Synthesis

- Sulfonamides (antibiotic) = PABA analogs)
- Trimethoprim
- = Folate analogs
 - = Selective inhibition of bacterial dihydrofolate reductase.
- Methotrexate (chemotherapy) = Folic acid analogs
 - Inhibitors of human purine synthesis
 - Inhibit Rapidly replication cell.
 - **o Bone marrow supression.**
 - o Nause Vomiting Gastritis Ulcer
 - Hair loss.

Salvage Pathway

Sources of NTP

ofrom denovo synthesis

ofrom the **diet**.

ofrom normal **cellular turnover.**

• HGPRT (Hypoxanthine Guanine Phosphoribosyl Transferase)

Enzyme: Hypoxanthine-guanine phosphoribosyltransferase (HGPRTase)

Lesch-Nyhan syndrome

- Complete deficiency of HGPRT.
- Inability to salvage hypoxanthine or guanine
- Increased PRPP.
- Decreased IMP and GMP.

Lesch-Nyhan syndrome

- For Glutamine:phosphoribosylpyrophosphate amidotransferase
 - excess substrate (PRPP)
 - decreased product (IMP)
- Purine denovo synthesis is increased.
- Decreased purine reutilization.
- Increased degradation of purines
- Production of large amounts of uric acid (Hyperuricemia)

Lesch-Nyhan syndrome

- Uric acid stones
- Gouty arthritis.
- Motor dysfunction, cognitive deficits
- Self-mutilation (biting of lips and fingers).

XANTHINE

CAFFEINE

THEOBROMINE

Regulation of Deoxyribonucleotides

- Thioredoxin contains two cysteine residues separated by two amino acids in the peptide chain
- dATP
 - Allosteric inhibit enzyme
 - Inhibit reduction of all four nucleoside diphosphates.
- **dATP increase = in Adenosine deaminase deficiency**
- This effectively prevents DNA synthesis
- **Hydroxyurea** destroys the free radical required for enzyme activity of ribonucleotide reductase
- Used in Cancer treatment.
- E.g. Chronic Myelogenous Leukemia.

Purine Degradation

- Occurs in the small intestine
- Pancreatic enzymes hydrolyzes the nucleotides to nucleosides and free bases.
- Inside cells, **Purine nucleotides = Uric acid**.
- In Mammals & Some organism
 - Uric acid = Allantoin.
 - Uric acid = Urea / Ammonia.
- Humans excrete about 0.6 g uric acid every 24 hours.

Degradation of Dietary Nucleotide

- Pancrease Release
 - > Ribonucleases and Deoxyribonucleases
 - hydrolyze RNA and DNA to Oligonucleotides.
 - > Pancreatic phosphodiesterases
 - Oligonucleotides to 3'- and 5'-mononucleotides.
 - > Nucleotidases
 - Removes phosphate = Nucleosides
 - Nucleosides = Free bases.
- Purines and pyrimidines are not used for synthesis of tissue nucleic acids.
- Dietary purines = Uric acid

GOUT

- Accumulation of **Monosodium Urate crystals** in synovial fluid
- Inflammation in surrounding area = Acute Arthiritis.
- At 30 °C & in acidic pH solubility is lower.
- Deposited in cooler areas of body.
- Tophi = Mass of monosodium urate crystals
- Deposited in the soft tissues
- Deposition of uric acid crystals in the urinary tract.
- Stone damage to kidney

Inflamed tophaceous gout Three inflamed tophi over the proximal interphalangeal joints in a patient with chronic tophaceous gout. Several of the lesions ruptured spontaneously over the next three days, exuding a pasty material composed of urate crystals and inflammatory cells but no organisms. The inflammation largely subsided over one week after the administration of a nonsteroidal antiinflammatory drug. Courtesy of Michael A Becker, MD.

- Synovial Fluid Examination in microscope
- Light microscopy = Presence of needle-shaped monosodium urate crystals

Primary hyperuricaemia

- Over activity of 5-phosphoribosyl amido transferase
- Over activity of PRPP synthase activity
 Increased V_{max} & lower K_m for ribose 5-phosphate
- Deficiency of enzymes of salvage pathway
 Lesch-Nyhan syndrome
 increased availability of PRPP.
- Glucose-6-phosphatase deficiency
 O Von Gierke disease
- Glutathione reductase variant

Secondary Hyperuricaemia

Increased production of uric acid

- leukemias,lymphomas,polycythemias
- Radiotherapy
- Chemotherapy
- Raised rate of catabolism in starvation

Reduced excretion of uric acid

- Renal failure
- Lactic acidosis
- Ketoacidosis
- Thiazide diuretics (inhibit secretion of uric acid)

Clinical features

- Gouty attacks may be precipitated by high purine and high intake of alcohol.
- Alcohol leads to accumulation of lactic acid.
- Metatarsophalangeal joints.
- Extremely painful.
- Synovial fluid will bifringent urate crystals.
- (**Tophi**) = Chronic cases uric acid deposited in joints.
- Deposition of urate crystal in renal = urolithiasis & renal damage.

Treatment

- In Acute attack
 - Colchicine
 - Prednisone
 - Indomethacin.
- Uricosuric agents = Probinoside
- Reduce urate production
- Allopurinol & Febuxostat,
- Allopurinol is analogue of hypoxanthine.
- Xanthine and hypoxanthine are more soluble & so are excreted more easily.

Precipitating Factor

- Excessive consumption of ethanol.
- Organ meats, anchovies, sardines, and legumes by diet.

Adenosine deaminase (ADA) deficiency

- ADA is expressed in the cytosol of all cells
- Lymphocytes have the highest activity of this enzyme.
- Accumulation of adenosine
- Increrase Adenosine =
 - = Increse Ribonucleotide or Deoxyribonucleotide
 - = Increase dATP levels.
- Ribonucleotide reductase is inhibited
- Inhibit production of all deoxyribose-containing nucleotides.
- Decrease dGTP, dCTP, dTTP production

- DNA formation during cell division inhibited.
- Severe combined immunodeficiency disease
- Involving a decrease in both T cells and B cells.
- Treatment
 - Bone marrow replacement
 - Enzyme replacement therapy
 - Gene Therapy.
- Without treatment, children die by the age of two years.

- Purine synthesis = Constructed on a pre-existing ribose 5-phosphate.
- Pyrimidine Synthesis = Before attached to ribose 5phosphate.

Two Main Domain of Pyrimidine Synthesis

- 1. Carbamoyl Phosphate Synthetase (CPS) II
 - a. CPS II
 - b. Aspartate transcarbamoylase
 - c. Dihydroorotase
- 2. UMA Synthase
 - a. Orotidylate decarboxylase
 - b. Orotate phosphoribosyltransferase

Synthesis of Carbamoyl phosphate

- Carbamoyl phosphate synthetase (CPS) II.
 - Multifunctional polypeptide
 - Three different catalytic domains of a single polypeptide chain.
 - CPS II, Aspartate transcarbamoylase & Dihydroorotase
- Glutamine and CO₂, catalyzed by
- CPS II

Inhibited by UTP (the end product)Activated by ATP and PRPP.

Carbamoyl Phosphate		
	CPSI	CPS II
Cellular location	Mitochondria	Cytosol
Pathway involved	Urea cycle	Pyrimidine synthesis
Source of nitrogen	Ammonia	γ-Amide group of glutamine
Regulators	Activator: N–acetyl- glutamate	Inhibitor: UTP Activator: ATP

Formation of a Pyrimidine nucleotide

- PRPP is again the ribose 5-phosphate donor.
- Both purine and pyrimidine synthesis thus require glutamine, aspartic acid, and PRPP as essential precursors.
- UMP synthase = domains of a single polypeptide chain
 - o Orotidylate decarboxylase
 - Orotate phosphoribosyltransferase

Orotic aciduria

ODeficiency of

- o UMA Synthase
 - Orotidylate decarboxylase
 - Orotate phosphoribosyltransferase
- Orotic acid in the urine.
- Megaloblastic Anaemia.
- Rx
- Uridine ??????.

Salvage of Pyrimidines

- Nucleoside kinases that utilize ATP
- Through phosphorylation of the nucleosides to nucleotides.
- The salvage of pyrimidine nucleotides is the basis for using uridine in the treatment of hereditary orotic aciduria.

Pyrimidine Degradation

Copyright © The McGraw-Hill Companies, Inc. All rights reserved.

Degradation of pyrimidine nucleotides

- Pyrimidine ring is opened
- Degraded to highly soluble products,
 - o β-alanine
 - o β-aminoisobutyrate,
 - with the production of NH₃ and CO₂.

