Laboratory

Community Medicine Department Government Medical College, Surat

Serial No.	Item name	Pieces	
Rack-1			
1.	Slide Box	13	
2.	Test Tube Box	2	
	Rack-2		
3.	Small Funnel	14	
4.	Big Funnel	7	
5.	Petri Dish	35	
6.	Beaker (50 ml)	3	
7.	Beaker (100 ml)	1	
8.	Test Tube (100 ml)	4	
9.	Test Tube (10 ml)	9	
10.	Measuring Cylinder (50 ml)	6	
11.	Flask (50 ml)	5	
12.	Plastic Funnel	1	
13.	Test tube box	1	
	Rack-3		
14.	Test Tube Box (Small)	2	
15.	Test Tube Box (Big)	1	
16.	Cover Slip Box	2	
17.	Tray with Miscellaneous Items	1	
18.	Chloroscope Box	15	
19.	Magnetic Stirrer	1	
	Rack-4		
20.	Burette (25 ml)	5	
21.	Magnifying Glass	2	
22.	Unidentified Thing	2	
23.	Flask (250 ml)	5	
24.	Test Tube (50 ml)	24	
25.	Round Bottom Flask (500 ml)	1	
26.	Silicon Bowl	5	
	Rack-5		
27.	Measuring Cylinder (250 ml) (Borosil)	5	
28.	Measuring Cylinder (250 ml) (Plastic)	1	
29.	Measuring Cylinder (500 ml)	7	
30.	Measuring Cylinder (1000 ml)	5	
31.	Measuring Cylinder (100 ml)	1	
32.	Measuring Cylinder (50 ml)	2	
33.	Measuring Cylinder (25 ml)	4	

Cupboard-1

34.	Test Tube (100 ml)	4
35.	Beaker (2000 ml)	3
36.	Beaker (100 ml)	3
37.	Flask (1000 ml)	5
38.	Flask (500 ml)	10
39.	Round Bottom Flask (1000 ml)	2
40.	Round Bottom Flask (2000 ml)	1
41.	Round Bottom Flask with Nozzle (500 ml)	2
42.	Unidentified Things	1

Cupboard-2

Sr. No.	Item name	Pieces
1.	Dissecting Microscope	32

Cupboard-3

Serial No.	Item name	Pieces
Rack-1		
1.	Test tube box	1
2.	Jar box	1
Rack-2		
3.	Glassware tray	2

Books

Serial No.	Name of book	No. of pieces
1	Pathology laboratory report form book	8
2	Biochemistry request form book	1
3	Microbiology laboratory report form book	1
4	Pathology laboratory register	3
5	Primary Health Center laboratory Manual	1
6	Community Health Center laboratory Manual	1
7	Microscope (Labo Med) User Manual	2
8	Prevention and Control of Fluorosis in India	1
9	Water quality & Defluoridation technique	1
10	Laboratory Manual	1
11	Manual for monitoring of Iodine Deficiency	1
	Disorders	
12	Basic Malaria Microscopy	1

Stations

Serial No.	Name of station
1	Microscopy
2	Estimation of Chlorine demand from drinking water
3	Determination of Chlorine
4	Estimation of Iodine and Fluoride in water using Ion specific
	electrodes
5	Entomology and Vector bionomics
6	Salt-sugar solution
7	Salt Testing for Iodine
8	Screening for cervical cancer
9	Estimation of available calcium & Magnesium in soil
10	ZN staining & Malaria staining
11	Standards of drinking water quality
12	Instruments-Incubator, Water bath, Magnetic stirrer, Illuminator

Station 1: Microscopy PSMP and AFB

<u>SLO:</u> At the end of session, student should be able to

- 1. Prepare blood smear to identify malarial parasite.
- 2. Identify malaria parasite and identify p. vivax and p. falciparum.
- 3. Prepare sputum smear and examine it.
- 4. Identify Acid fast bacilli on smear.

Materials used: Microscope, slides, samples, needles, cotton, containers etc.

<u>Method of teaching</u>: Demonstration, Discussion on identifying the differential features of p.vivax and p. falciparum, Discussion on identifying the AFB on smear, fine and coarse adjustment

Method of assessment: viva questions, short questions

- 1. How do you prepare blood smear on slide?
- 2. What are the differentiating features of p. vivax and p. falciparum.
- 3. What are the physical characteristic features of Acid fast bacilli?

Station 2: Estimation of chlorine demand in water

SLO: At the end of session, student should be able to

- 1. Know use of Horrock's Apparatus
- 2. Estimate the dose of bleaching powder to disinfect the water.
- 3. Demonstrate the procedure of estimation of Chlorine demand of drinking water sample.

Materials used: Horrock's apparatus, Water sample

<u>Method of teaching</u>: Demonstration, Explaining the procedure of staining, Discussion on identifying the differential features of p.vivax and p. falciparum, Discussion on identifying the AFB on smear

Method of assessment: Viva questions, short questions

- 1. What is the interpretation of the test?
- 2. What is the value of free residual chlorine?
- 3. How can you estimate the chlorine demand of drinking water?

Station 3: Check residual chlorine in chlorinated water sample

SLO: At the end of session, student should be able to

- 1. Know different method of chlorination.
- 2. Know the use of Chloroscope.
- 3. Define and explain the break point chlorination, super chlorination, chlorine demand and free residual chlorine.
- 4. Know the value of free residual chlorine.

Materials used: Chloroscope

<u>Method of teaching</u>: Demonstration, Explaining the procedure of staining, Discussion on identifying the differential features of p.vivax and p. falciparum, Discussion on identifying the AFB on smear

Method of assessment: Viva questions, short questions, short notes

- 1. Define break point chlorination and free residual chlorine.
- 2. What is the value of free residual clorine?
- 3. How can you estimate the chlorine demand of drinking water?
- 4. What is the interpretation of the test?

Station 4: Estimation of Iodine and Fluorine in water

SLO: At the end of session, student should be able to

- 1. Know normal value range of Iodine and Fluorine in water
- 2. Enumerate the diseases caused by deficiency and excess of Iodine and fluorine.
- 3. Able to perform testing of Iodine and Fluorine in water sample.

Materials used: Iodine and Fluorine Testing kit, fluoride electrode, pH meter

Method of teaching: Demonstration

Method of assessment: Viva questions, short questions, observing the procedure

- 1. What is the normal value of Iodine and fluorine in drinking water?
- 2. Which diseases are caused by deficiency of Iodine?
- 3. Explain- 'Fluorine-Double edged sword'

Station 5: Entomology and vector bionomics

SLO: At the end of session, student should be able to

- 1. Identify different vectors and their species
- 2. Know diseases transmitted by different vectors
- 3. Understand the vectors interaction with the environment

<u>Materials required:</u> slides of mosquitos, housefly, sandfly, tick, mite and flea, magnifying class.

Method of teaching: Demonstration, discussion

Method of assessment: Viva questions, short questions

- 1. Identify different vectors of medical importance
- 2. Which diseases are transmitted by rat flea/any vector?
- 3. How can we control rat flea/ any vector?

Station 6: Home Made ORS

SLO: At the end of session, student should be able to

- 1. Know use of Home Made ORS
- 2. Prepare home Made ORS

Materials used: Sugar, salt, clean drinking water, spoon

Method of teaching: Demonstration, explanation

Method of assessment: Viva questions, short questions, demonstration

- 1. What is the composition of Home Made ORS?
- 2. What is the composition of WHO low Osmolarity ORS?
- 3. What are the indications of use of Home Made ORS?

Station 7: Estimation of Iodine in salt

SLO: At the end of session, student should be able to

- 1. Know the value of iodine in salt at consumer and production level.
- 2. How to perform test and interpret it?
- 3. Describe Iodine Deficiency Disorders.

Materials used: Iodine testing kit, salt sample.

Method of teaching: Demonstration, explanation

Method of assessment: Viva questions, short questions, demonstration

- 1. What is the recommended value of Iodine in salt at consumer and production level?
- 2. What is RDA for Iodine in adults, pregnancy and lactation?
- 3. Describe Iodine Deficiency Disorders and measures to prevent them.

Station 8: Screening for Cervical Cancer

SLO: At the end of session, student should be able to

- 1. Know the method of cervical Cancer screening
- 2. Able to identify pathology by using microscope
- 3. Know the epidemiology of Carcinoma Cervix
- 4. Know the preventive measures for Ca. Cervix.

Materials used: Prepared slide, binocular microscope

Method of teaching: Demonstration, explanation

Method of assessment: Viva questions, short questions, demonstration

- 1. Which method is commonly used to screen Cervical Cancer?
- 2. Give identification features of Carcinoma on slides.
- 3. What is the causative organism for Carcinoma Cervix?
- 4. Which vaccines are available for Ca. Cervix?

Station 9: Estimation of available Calcium and Magnesium in soil

SLO: At the end of session, student should be able to

- 1. Know how to perform the test to check quantity of salts
- 2. Know the public health importance of Calcium and magnesium.

Materials used: Soil sample, soil testing kit

Method of teaching: Demonstration, Discussion

Method of assessment: viva questions, short questions, observing the procedure

- 1. How will you check the quantity of available Calcium and Magnesium in soil?
- 2. How will you use soil testing kit?
- 3. What is the public health importance of Calcium and Magnesium?

Station 10: Malaria stain and ZN stain

SLO: At the end of session, student should be able to

- 3. Prepare blood smear to identify malarial parasite.
- 4. Prepare sputum smear to identify acid fast bacilli.
- 5. Demonstrate malaria staining and ZN stain.
- 6. Know the use of stain and reagents.

Materials used: Slides, stains, reagents, samples, needles, cotton, containers etc.

Method of teaching: Demonstration, Explaining the procedure of staining

Method of assessment: viva questions, short questions, observing the procedure

- 1. Which stains are used to stain malaria parasite and Acid Fast bacilli?
- 2. How will you stain the slide for blood and sputum sample?
- 3. What are the mechanism of above reagents and stains?

Station 11: Checking standards of drinking water quality

SLO: At the end of session, student should be able to

- 1. Know the WHO criteria for drinking water quality
- 2. Describe acceptability, microbiological, chemical and radiological aspects
- 3. Describe in detail chemical aspects of drinking water quality
- 4. Perform the test to quantify major minerals in water

Materials used: Water testing quality, water filters, water sample

Method of teaching: Demonstration, Explaining the procedure of testing, discussion

Method of assessment: viva questions, short questions, observing the procedure

- 1. What is the WHO criteria for drinking water quality?
- 2. How will you check quantity of minerals in drinking water?
- 3. Describe chemical aspects of drinking water.

Station 12: Incubator

SLO: At the end of session, student should be able to

- 1. Know the mechanism of incubator and water bath.
- 2. Know the procedure of incubation.
- 3. Which samples or chemical can be incubated.

Materials used: Incubator, water bath, magnetic stirrer, illuminator

Method of teaching: Demonstration, Explaining the procedure of incubator, discussion

Method of assessment: viva questions, short questions, short note, observing the procedure

- 1. What is the principal and mechanism of incubator?
- 2. What is the procedure of incubation?

